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Random Covering and Packing on the Line

by Howard J. Weiner

University of California, Davis and Stanford University

I. Introduction: Covering Model. Unit length segments are sequentially

placed independently at random uniformly on a line segment [O,x) until

that segment is completely covered. The covering models of Renyi and

Solomon will be considered in section 2, and asymptotic results for the

two dimensional cases for both models will be given in section 3. The

variance and other extensions will be indicated.

A packing and covering model for the one dimensional abacus grid

will be indicated. The one-dimensional Renyi model is as follows.

The center of each unit segment is chosen uniformly on [O,x). The

unit segment so chosen is placed on [O,x), x > 1. The process is re-

peated, and a new unit segment is kept (parked) if and only if its

center is on an uncovered portion of [O,x), otherwise it is discarded.

The process stops as soon as the [O,x) is completely covered. All

unit segments except those covering the ends must lie within [O,x).



2

Let M(x) - mean of the minimum number of unit
(1.1)

segments covering [Ox) in the Renyi model.

The Solomon model allows the center of each unit segment to be chosen

uniformly on [Ox). Unit segments are placed without exclusion or further

constraint until the [O,x) is covered. Let

R(x) = mean of the minimum number of unit segments (1.2)
covering [O,x) in the Solomon model.

Results for a model related to the Solomon model (1.2) are obtained

in Solomon (1966). The results here are by different considerations.

The parking models (Blaisdell et al (1970), Solomon (1966) are

trelated to these problems and references relevant to sections I, II,
VII are contained there.

let, in either model,

Xl(t), X2 (t) be I.I.D., each distributed as X(t),

which is the minimum total number of unit length (1.3)

cars needed to cover [Ot).

Then conditional on the first placement with center at t + 1, one
2'

may represent X(x) as

X(x) - Xl(t) + X2 (x-t-l) + 1 (1.4)

Taking expectations of (1.4) for the Renyi model and combining

two integrals on the right, one obtains

~M
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1

2 1M(x) -1 2 M(u)du, x > 2 (1.5)
X 0 1

and M(x) - 1, 0 < x< 2'

Hence for x > 1, 1

M(x) - 1 + + - M(u)du. (1.6)
2

Lema 1. If A(x), x > 1, satisfies

1
AWx( CD -X 2(u)du (1.7)

2

and

A(x)(> ) 0, for (1.8)

1 < X0 5x < X0 + ,

then

A(x) )O for all x> x. (1.9)

Proof. Assume the upper inequality in (1.7) and (1.8). Then

(1.8) into (1.7) for x0 + 2- x < x0 + 1 yields

A(x) - 2 [ 1 0 A(u)du + ,fx A(u)du] (1.10)
2 Xo

The first term on the right of (1.10) is non-negative since

A(Xo + 1) > 0 and the integrand of the wxcond term is non-negative by

(1.8), The result nov holds for x0 < x < x0 + 1, so that the process is

continued as before, and an induction completes the proof. The lover

inequality is similar.
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Theorem 1. For x > 1,

1.485 x + .485 < M(x) < 1.5x + .5 (1.11)

Proof. An explicit computation verifies that if

LI(x) E 1.485x + .485 (1.12)

L2 (x) =- 1.5x + .5

then for x > 1, 1

LI(x) < 1 + + 2 x2-1 (.13)()- x x _l L1 (U)du(.3)i

2
1

L2 (x) - 1 + +2 L2 (u)du (1.13)(11)

2

3and for 1 < x < 2

L1 (x) <M(x) <L 2 (x). (1.14)

Hence, defining, for 1-1,2,

Ai(x) - Li(x) - M(x), (1.15)

it follows that

1
2 2

2

r

4'u (,. 116(1
"~ ~ ~ x 1 4 2--.-
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3L

and for I < x < 3, it is easily computed that

A, < 0 (1.17)

62(x) 0.

The theorem now follows from (1.14) - (1.17) and the lemma.

Taking expectations of (1.4) for the Solomon model, one obtains

for x > 0,
r.x"

R(x) - 1 + R(u)du (1.18)
0

with R(O) - 1.

This Volterra-type equation has a unique solution, which is easily

seen to be, for x > 0

R(x) =- 2x + 1. (1.19)

To obtain precise asymptotic behavior of M(x), define the Laplace

transform for 0 <s < 1

L(s) -e'SXH(x)dx. (1.20)

2

Since M(x) < 2x + 1, L(s) is well defined. From (1.5) it immediately

follows that
2e -s/2 2e -s -s/2 ,'l _ 3

L (s) + s L(s) - e (1.21)
s 8

with solution, using the fact that M(x) _5 cx,

_u/2 e -u/2
2j e - du -2j 5  du 3> _v' 12

L(s) e e v e - v2 + -dv (1.22)__ 2v v v

-- - -- -
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Since for 0 < s < 1,

J' e ' u / 2  s'/2 e - U ' l du1 z()

edu -y du - ) (1.23)
s 0O

for 0 < s << 1, it is seen by a Taylor expansion to one term,

L(s) -- + - (1.24)
2 s

where

cc Cce'u/2-2 du -s / ,v-e-2'y e .v u -v/2 + i,. 12e -e
c 4e e dv (1.25)

IV 
v

Theorem 2.

lim x1 M(x) - c, (1.26)
-lO

lim x R(x) - 2, (1.27)

and

1.485 < c < 1.50 (1.28)

Since it may be easily shown that lI(x) > 0 from (1.5), Abelian
and Tauberian theorems (Widder (1941), pp. 182, 192) yield from (1.24),

(1.25) that (1.26) holds. The equation (1.27) is immediate from (1.19).

To show that c < 1.5 in (1.28), taking the Laplace transform of

the second equation of (1.13), where L2 (x) E 1.5x + 1.5 and repeating

steps as in (1.21) - (1.25) one obtains that
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lm x ) 1 "(1.29)
X ,., CO

11 2 1e u -- 3s/2du r 2e 3e 3ev/2 -s/2 -s 4e "  1
= 4e2 (e v I j 2( 2

in O Le V v 2 8 3 a2

i-2 e-" du v  3ev/2 4e3Vf2e-2y u r2- e e v2
-4e - e - + 3 -v/2_ -e v 4 dv.0 ,-v 2v-- v 3 e e2

v

} By evaluating the contribution to the integral in (1.29) near 0,

and comparing it to the contribution near 0 to the integral in (1.25),

one obtains that these are not equal.

To establish the left inequality in (1.28), a similar method to

that used above suffices. This is outlined as follows. It is easily

established that there exists an a such that

r1.48 5x + .4 8 5  ,x >-2

r 2

satisfies, for x > 1 1

1

+ 2(u)du. (1.31)

2

Taking Laplace transforms of (1.31) for 0 < s < 1,

k(s) - e'Su(u)du, (1.32)

2

one obtains an explicit solution for k(s), and then that for 0 < s << 1,

k(s) - + - (1.33)

where 0 is expressed as a definite integral which is seen to be not

equal to that in (1.25). This completes the proof.
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IT. Second Moments: Covering Models.

Let

M,2(x) - E1 (x) (2.1)

R (x) - EY2 (x)

Theorem IR.

lir x 'Var X(x) - a > 0 (2.2)

X-00

where a is obtained explicitly.

For x > O,

Var Y(x) = (x+l) (2.3)

Proof. Squaring (1.4) and taking expectations, it follows that

12(x) - 21(x) - 1 + 2 M(t)M(x-l-t)dt (2.4)x0

11
+2 M2(t)dt.

R2(x) 2R(x) - 1 + 7T 2 o R(t)R(x-l-t)dt

+ - OR2 (t)dt. (2.5)

with respective initial conditions

(i) M2(x) - 1, 0 < x <2 (2.6)(i)

(ii) 2(0) + . (2.6)(1)

Since R,(x) =2x + 1, (2.5) has imediate solution
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2 14 5
2(x) 4x +Tx + 3 (2.7)

and hence

Var Y(x) - R2 (x) 2(x) - (x+1), 
(2.8)

which is (2.3).

To prove (2.2), define

I(x) x + c x - 1, 2 (2.9)

Then, defining, for x > 1,

2D(x) E(X(x) - I(x)2 , (2.10)

it is obtained that

1

D(x) f(x) + x j (M(t) - A(t))(M(x-l-t)-,(x-l-t))dt

1+ 2 'D(t)dt, (2.11)

x

where

-1

limr x (f(x) - 0, (2.12)
X,=

and f(x) is expressible in terms of M(x).

Hence (2.11) may be written
1

D(x) = g(x) +x 2D(t)dt, (2.13)
0
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where, by (1.24), (2.12)

lir x 1g(x) = b 0 0. (2.14)

X -.. CO

Solving for the Laplace transform of D(x) as in section I, one may

obtain that the asymptotic behavior of D(x) may be established as

lim x 1D(x) - a > 0. (2.15)
X-O

Noting that

IVar X(x) - D(x)l = 1M2(x) - 42(x) - (M2 (x)-21(x)M(x)+
2 )

2
= (M(x)-,(x))2, (2.16)

it follows from (1.24) that, as x ", (2.17)

x'ljVar X(x)-D(x)I = o(x), establishing (2.2).

III. Abacus model.

Discrete covering model versions of those in sections I, II are

given. A line segment of length a +1, with a > 0 an integer, is placed

on the x-axis so that the left endpoint is 0. For d > 0 an integer, a

2d-length "car" is set ("parked") at random upon the segment, such that

the midpoint of the "car" is placed upon any of the points (0,1), (0,2),

(0,a) uniformly with probability I. Independent of the first "car," a
a

second 2d-length car is placed with midpoint chosen uniformly at random

(if possible) at (0,1), (0,2),...(0,a), and "parked" (kept in that place)

if and only if the center of the car is on an uncovered point (Ok),

4,
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1 < k < a of the original segment, otherwise it is discarded, and a new

2d-length car is placed I.I.D. as the previous one. The process con-

tinues until for the first time the points (O,k) for 1 < k < a are all

covered. This is a Renyi model of covering the one-dimensional abacus.

A Solomon model of covering is similar, except that a newly placed

d-length car with left endpoint on an integer point is kept ("parked")

if and only if some portion of the car covers a previously uncovered

integer point (Ok), 1 < k < a.

Let, for a > 0 an integer, d > 0 an integer

X(a) = minimum number of 2d-length cars needed to cover the [O,a+l]

interval in the Renyi model (3.1)

Let Y(a) = minimum number of d-length cars needed to cover

[O,a+l] in the Solomon model. (3.2)

Denote

me(a) M E(X(a)). (3.3)(1)

r(a) E(Y(a)). (3.3)(11)

T(a) -E(Y(a)-r(a)) 2 . (3.3)(iv)

Theorem III.

lim a m(a) - a i > 0 (3.4)(1)

lim a- r (a) - a2 > 0 (3.4)(11)
a-O
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lim a-l2(a) - 01 > 0 (3.4) (iii)
a-e

lir a' (a) 8 2 > 0. (3.4)(iv)
a-o

Proof. Again taking expectations of (1.4), regarding the quantities

there as appropriate for either X(a) or Y(a), respectively, yields for

the Renyi model,

!: a-d-Im(a) - 1 + !- E m(), (3.5)

a Am,

and m(l)-m(2)-... ,m(d)im(d+l)=l.

For the Solomon model,
a-I

r(a) - 1 + 7 E r(A), (3.6)

A-1

with r(l) - 1.

As in section I, define, for 0 < s < 1,

K(s) ; Z e om(Z). (3.7)
A-d+2

Since w(A) < 1, K(s) is well defined.

Clearing of fractions in (3.5) and applying (3.7) yields

V(S) + K(d ) K-s (d+2)5 2(d+l)e-
( d+ 2 )

K ) () (-e_ 8 ) J l-ec

e-s (d+2)
S • ((d+l)e 5'-d] (3.8)(1) *' 2

(1-



13

or
2e - (d+l) -s(d+2)

K'(s) + K(s) 2e - [(d+l)e-'-d]. (3.8)(11)
1-e-s (1-eS)

This has solution

e r, Ce-u(d+l) -eV(d+2)((d+l)e-V dl-lK(s) =exp2, s e-u dul exp[-2Jv 1-e-u du )-_ .j dv.

(3.9)

For 0 < s << 1,

K(s) - b + 2(d+l)b- (3.10)s s

where

, r. eru(d+l) - eV(d+2)
b i expL2 du + 2 8J L_ v 2 t(d+l)e V-dij dv, (3.11)

v 1-e (1-e')

with

1 u(d+l) eU(d+l)
eE(l Udu + jdu (3.12)

0 (1-e u  1 (l-e- u )

It is noted that the symbols a1
6
1y1, etc. are used to denote different

quantities in different expressions.

A similar result holds for the Solomon model, by the same method,

outlined below.
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Let

J~a - e A) (3.13)

A-2

Then

J' (s) = - - d J(s) _ (d+4)e2s -(d+3)e3s(.4
\ -e -S (le -s )2 (.4

with solution

_u r-uu2s3
J (t)umexp[2: d- u d+dtf exp,,- 2~ du-ds !d) 8 d 3 eds.

1-t s1-e- (1-e-' 2)

(3.16)

and for 0 < t «< 1,

j (t) - + k (24,d) 1(.6

where

e -u -2s- -3s
k j expE-2r du -ds +2y; ~+) -(+)

0 1-LJ (-d)e ds (3.17)

wi th

y~ du + eU du (3.18)
0''(l-e U) ul(1-

The linear solutions to (3.5), (3.6) are given below.

Setting

m(a) a 1a + ~l(3.19)

r(a) 02 aa + 0
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2
in (3.5), (3.6) respectively, and equating coefficients of a , a, 1,

respectively, after clearing the denominators, one obtains for the

Renyi model
a-d-1

a(aia".0 - a + 2F E (a + 0 (3.20)(i)
-"w d+3

2+ 2 (d+2+ -) ,

since

m(d+2) 1 + d+2 (3.20) (11)

and one obtains

3d2 +lld+12 (3.21)(i)
2(d+2)(2d2 +5d+3)

and for the Solomon model, the corresponding result is

2 d (3.21)(ii)2 d+ 1 ' 2 " d' 2 -

The variances for the tvo models are obtained by squaring (1.24)

to obtain, denoting

m2(a ) - E(X(a)) 2  (3.22)(1)

r2 (a) a E(Y(a)) , (3.22) (it)

that, respectively,
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a-2d-2 a-d-l
2 (a) - 2m (a) +1 E  m(A)m(a-2d-L-l) + E=(A) (3.23)

a 2-1 a (1

with -2(A) 1l, 1 < A < d, 2 (d+Z) - 1 +

2 a-d-2 2 a-i
r 2(a) - 2r(a) -1 + E- r(t)r(a-d-1-1) + 4- E r () (3.24)

2 ad h-l A-d1 2

with

r2 (1) = 1, r 2 (2) = 1 + 22 2d+2"

Denoting the linear functions, for x > d

L1 (x) = bx + (2b (d + l) -1) -m(x) (3.25)(i)

A2 (x) - kx + (k(d+2)-1) - r(x) (3.25) (II)

corresponding to the means for the Renyi and Solomon cases, respectively.

(i) 2(a) - E(X(a)-/. (a))2 (3.26)(i)

2 2
(ii) t (a) - E(Y(a)- 2 (a))

2
. (3.26)(ii)

From (3.23), (3.24) respectively, it follows that

2 2a-d-l
s (a) - f (a) + a E (m(v)-Jl(v))(m(a-2d-v-l)-L1(a-2d-v-1))

v-Il

2 a - d -l 2
+- E s (v) (3.27)

a
-V-
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2 ( a  2 a 2 a-d-2

t (a) f (a) + - d (r(v)-.f2(v))(r(a-d-v-l)-L (a-d-v-I))
v-1

a t 2 (v), (3.28)

where If (a)! < M, i-1,2, for some constant M < w.

From the Laplace transform of (3.27), (3.28), it may be concluded

4that

a-s (a)".C 1 <m (3.29)(1)

a- t (a) "*C2 < (3.29)(11)

and hence that (3.4)(iii), (3.4)(iv) hold. This completes the theorem.

IV. Random Car Size

One covering model by randomly chosen car lengths is as follows.

On a curb [O,a] a car of length x is placed with center chosen uniformly

on [O,a], and x is chosen from a probability distribution with density

f(x). The car is kept in place (-parked) if and only if its center is on [o,a].

A second car is chosen I.I.D. as the first, and parked if and only if

its center is on an uncovered portion of [O,a]. The process continues

until no further portion of the curb is uncovered.

Let

F(x) - j f(y)dy, with F(c)-0, F(c+) > 0, for some c > 0 (4.1)
c

denote the distribution function of one-half of the car length, and

M(a) - mean total number of cars required to first cover [0,a]. (4.2)
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Then by considerations as in (1.4) for a > c,

a ia-u
M(a) - + Jf(u)du0 M(y)dy (4.3)

a0 0

and M(x) - 1, 0 < x < c.

A formal solution for the Laplace transform of may now be obtained.

It is assumed that M(a) is finite. This can be guaranteed, e.g.,

by setting F(c) - 0 for some c > 0.

Assume that

GO2y f(y)dy < ".(4.4)

0

Denote

O(s) esyf(y)dy. (4.5)
0
°00

L(s) = e5 SYM(y)dy. (4.6)
I c

Then multiplying (4.3) by e-sa and integrating from 0 to yields

L'(s) + 2#(s) L(S) =- eS(l+sc)+21(s)(l-ec) (47)s 2s

with solution

L(s) 2  #(exp u- eVC(l+vc)+21(v)(l-e VC)

Ldue -2 du+28 : dvu 1 u2 J
S

~(4.8)

iA
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with
6- 1) du + () du. (4.9)

0 u u

For 0 < s << ,

L(s) 2 + L (4.10)
s s

where here

.0 - 2j,, D 1-(ul du +2 - VC(l ,c)+2a(v) (l'e'VC) I
y J expL-, u + j 2 eJ dv (4.11)

and

9 yf(y)dy. (4.12)

Theorem IV. Under the hypotheses of section IV,

lrm a- M(a) - y. (4.13)
a-S

Proof. This follows from (4.10)and a Tauberian theorem (Widder

1941), pp. 182, 192), since M(a) is of bounded variation.

Remark I. A simple approximation to y may be obtained by finding

the approximate linear solution to (4.3). Assuming a solution to (4.3)

of form aa+0, one equates coefficients of a2 ,a, for a large, in

aj uu'a'u
a(aa4) - a + 2j f(u)du (ay")dy + c' ,(4.14)

".1 1

0
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that is, solve for a,P in

where aa +Oa -a+a[a 2 2ap + 2- c 2 + 20[a-u-cJ 2c (4.15)

P2 J yf f(y)dy, (4.16)

to obtain

aI 2 2 2p +4c hk -l (4.17)

The properties of this approximation remain to be investigated. It is

conjectured to be a good upper bound. When c 1 , .

corresponding to unit length cars, a - ,which is a good upper bound

in the Renyi covering model of section I.

f Remark II. Let

W(a) - total number of random size cars required to cover [0,a]. (4.18)

Let 2(a) - EW2 (a) (4.19)

By the usual argument as in (1.4),

na a-u
142 a)2M ( a)- 2 f(u)du M(y)M(a-u-y)dy

a-u

+ ?.I f(u)du J 42 (y)dy (4.20)

* ~andll(~l0yc
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Since this expression is similar in form to the second moment

expressions for the models of previous sections, it is plausible that

Var[W(a)] - M2 (a)-Q((a))2 ~ E(W(a)-Z(a)) 2  (4.21)

where

A(a) - u + 2, Y- 1, (4.22)

and hence it is conjectured that, under mild moment conditions,

lim a-1Var[W(a)] - lb.0, (4.23)

where I is a finite constant.

V. Alternating car size

On a curb [O,x], a car of length 1 is parked in accord with a

Renyi model (i.e. the center must be on [O,x]) or a Solomon model

(i.e. some portion must be on [O,x]). The next car candidate in the same

model is of length a > 1, and in the Renyi model is parked if and only if,

the center falls on an uncovered portion of [O,xl, and, for a > 2, the

car does not completely contain the car of length 1. In the Solomon

model, some portion of the a-length car must fall on an uncovered portion

of [O,x], and also must not completely contain a car of length 1,

otherwise it is discarded. If an a-length car is discarded in either

model, another a-length car is selected I.I.D. as the prior one,

until one is parked, or the interval iO,x] is completely covered, at

which time the process stops. If the a-length car is parked, and some
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portion of [0,x] is uncovered in either model, the next car to be

parked is one of length 1, followed by one of length a, and so on,

alternately, until [O,x] is completely covered in either model, at

which time the process stops.

Let

X1 (x) - minimum total number of alternate size cars required to

cover [O,x] in the Renyi model starting with a car of length 1, and

X2 (x) - same quantity starting with a car of length a.

X(1)(u) - minimum total number of alternate size cars required to

cover [O,u) in the Renyi model when the first car to be parked was an

a-length car, parked at [u,u+a] on a total interval [O,x], for x > u +a.

X(2)(u) = minimum total number of alternate size cars required to

cover [O,u] in the Renyi model when the first car to be parked was a

1-length car, parked at [u,u+1] on a total interval [Ox], for

x > u+l.

Let (5.2)

YI(X), Y2 (x), Y(
1 )(u), Y(2)(u) be the corresponding quantities for

the Solomon model.

Let (5.3)

ri(x) - E(Yi(x)) i1,2

r(i)(x) - E(Y (i) (x)) i1-,2.

By considerations as in the previous sections, by expressions

similar to (1.4), it follows, for the Solomon model, for example,

P
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r2(x) 2 a +r (x-u-a)du

+2 pXa 1f. xa 1 + t U+ ( (u) + r ( 2 ) (x-u-a))]. (5.4)

2 0

r(X) - +l du(l +r 2 (x+l-2a-u)

I 2 u[I . u+2-2a r()
X~l 3-4a (r 2+2 -Za

with

r 1 (0) - r2 (0) = 1. (5.4)(ii)

Also, an approximation which may be good for large x is

fx-a F o-a

J du r (u) du u+ 2 rl(u)
0 '10 -2

rx-a _- (2)
+ du x-a+l-u (2) (u). (5.4) (ii1)

Similar expressions hold for the means in the Renyi models, with

slightly different initial conditions, and the cases 1 < a < 2 and a > 2

are treated separately. It may be possible to obtain linear solutions to

(5.4) for x large, but the computation is tedious, and of unknown merit.

The exact solution of (5.4) by Laplace transforms appears possible by

power series or a Volterra-like expansion, and an asymptotic solution

-2
with leading term s is sought, corresponding to asymptotic linearity,

since it is conjectured that r i(x), 1-1,2, grow, for x "

as

ri(x) - a x + 0,, i1,2. (5.5)

i I

_--A. _77 - -MiMML
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This is because r (x) < r (x) < r(x), where r(x) is the mean number of
a -i -

unit length cars required to cover [O,x], and r (x) is the mean number

of a-length cars required to cover [O,x] in the Solomon model.

VI. Abacus Packing.

A one-dimensional abacus packing (- parking) model on a discrete

grid is considered. A car of length d, where d is an odd, positive

integer, is parked horizontally with center chosen uniformly from

Kd - N ±o~-,.( A l (2, where a is a positive integer, a > d.

A second car of length d is chosen I.I.D. as the first, and parked if

and only if it does not intersect the first car, and its end closest to

the first car is at least 1 unit away, otherwise it is discarded, and

another car chosen I.I.D. as the first, and so on, until it is parked

or no further cars may fit in the prescribed manner.

Let (6.1)

X(a) = total number of d-length cars (d an odd, positive integer)

which may be parked on [(/,0) 1 < A < a), with center at (k,O), with k

chosen uniformly from: d -<k <a 2 ( )

Then, conditional on the center k chosen as above,

d+3 . d+1 d+3 .d+1.

1+ X'(k-(-)) + X (a-k- (-)) if k < a -
X(a) I ~ + X'(a-d-1) if k - d+l or k a- )(6.2)

2

where X'(r), X"(r) are I.I.D. as X(r).

Let, for r > 0 an integer,

m(r) EX(r) (6.3)

im
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Then, from (6.2), on taking expectations, one may obtain

a-2
m(a-fd-l) - 1 + 2 E ma(- ) (6.4)

a h -

with m(L) 1, d < A < 2d, m(A) - 0, A < d.

To obtain the asymptotic mean number of d-length cars which may be

parked, one proceeds as before using the Laplace transform.

Define

K(s) - m(L)e st (6.5)

Then (6.4) yields that, summing from A-l to ,

2e s(d+l) N- esd

K' (s) + _-- + K(s) - (6.6)
l-e-s  (1-e-')2

with solution

e c-u (:d+1)F r- e -u(d+l) F dv -

K(s)=expL-(d-l)s+2' -u dul ex L(d-l)v-2J duJ e -v)2J dv,

s (1-e ) v 1-e

(6.7)

so that for 0 < s « 1,

K(s) + c(d+3)-l (6.8)2 s
s

where

r a e -u(d+l) 1 e-dV

c , e (d-1)-2J - du + 28 m dv (6.9)
0 v (1-e') (1-e v)2
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with

ce'-u(d+l) d 1  e-u(d+l) 1 d
l ( U) du+" L- - Idu. (6.10)(1eu  0 (1-e~u) U

A Tauberian argument (Widder (1941), pp. 182, 192), yields,

for A large

m (1) - c + c(d + 3) -1.(6.11)

Remark 1. An approximation to m(.) in (6.11) may be obtained by

obtaining the linear solution to (6.4), as follows.

Writing (6.4), for a > 2d + 3 as

:' ra-2
a m(a+d -1) = a + 2 E m(A)J + 2(d+l) (6.12)

b-2d+l

and trying a solution of the form

r(A) - al + P (6.13)

and equating coefficients of a , a, 1 respectively yields the solution

r(1) - 31 + 3 - d (6.14)4d + 3

Remark 2. The properties of a linear solution depend on d.

The case d - 1 is given, as in Weiner (1980).

The equation (6.4) becomes

a-2

=(a) - +2 aM( ) (6.15)
a l
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with =(I) m u(2) = 1.

Lemma 2. If for A> r + 2, for some r > 1,

2 A-2
A(E) = E .(k) (6.16)

k-r

and A(AO+l) >, A(O+2) > , A6+1 > r + 2, then A(A) > 0, 1 > + 1.

Proof.

A(.9O+ 2 ) 2 0 implies E A(k) 2t 0, (6.17)
k-r

so that

A 2 E(k) + A(.O+ >) 0. (6.18)

A O-w L k-r ~ L+)

Nov A(AO + 2) > 0, A(£O+3) 0 0, and a repeat of the argument

yields a proof by induction.

Lemma 3. For A > 5,

<_ m(< ) 49+3 (6.19)
7 9

Proof. Eq. (6.15) may be written

-22 2
M(A) 1 + + I+ Z m(k). (6.20)k-2
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For A > 4, it is immediately verified that the function

r(A) 4A+3 (6.21)9

satisfies

r(A) Wl+ +j 1 Er(k). (6.22)

Denoting

()- r~t M m(A) (6.23)

then

2 A-2
I(- E A, (k) (6.24)(1)

k-2

and a computation yields that

A,(5) 2: 0, 61(6) > 0. (6.24) (11)

Hence lemma 1 applied to (6.22)-(6.24) yields the right side

inequality of (6.19).

For A > 5, (6.15) may be written

mA-I+ !+ EA~ m(k) (6.25)
A k-3

and for A£> 5, the function

V(A) a 3A + 2 (6.26)

satisfies

V()-+-+- E V(k). (6.27)

L
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Denoting

)- m() - (6.28)

then

2 2 ( k )  (6.29)

k-3

and a computation yields that

t 9(5) _> 0, 62(6) > 0, (6.30)

so that lemma 1 applied to (6.28)-(6.30) yields the left inequality of

(6.19).

By arguments for the second moments as in the previous sections,

it may be seen that the

l Vm x'Ivar X(x) - y > 0 (6.31)

VII. Remarks.

Remark 1. Using Weiner (1979), it is easily seen from higher

asymptotic moment computations, obtained by taking expectations of

higher powers of (1.24) that a central limit theorem holds for each

model in sections I, II. One example is the following.

Let (7.1)

X(x) - total number of cars required to cover [0,x] in either a

Renyi or Solomon model of sections I, II.

Denote

lim x '1 (X(x)) P > 0 (7.2)(1)
X-*W
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lrn X Var(X(x))- a a> 0. (7.2)(1)

Theorem V. For a < e ,

limpa<XX)b _y 2 fY /2dy
lmP a K 7 < bj 1~ f ea (7.3)

4 Remark 2.

The same considerations are conjectured to suffice to establish a

central limit theorem for models in III, IV, VI, and a bivariate central

limit theorem for the alternate car size model of section V.

Remark 3. It is conjectured that a two dimensional "Palasti"

result holds for the covering models of sections I, II. That is, for

unit square cars dropped uniformly on a rectangular parking area of size

x X y, let (7.4)

M(x,y) - mean total number of unit square cars required to cover

x X y under a Renyi or Solomon model.

The Palasti conjecture for this model is then

lim (xy) -lM(x,y) - P 2. (7.5)
x,y"

See Weiner (1978) for a heuristic discussion of packing models in the

plane.
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